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ABSTRACT 
 

The analogies between mechanical and electrical systems are well 

recognized and established. Constitutive relations for analogous quantities, as 

well as equilibrium equations, are of the same mathematical form, hence – the 

behaviour of both systems, under the equivalent assumptions, is also of the same 

form and can be analysed by employing similar methods. In the paper the focus 

is put on the system of analogies between electrical circuits and linear truss 

structures subjected to dynamical excitation. The so-called Impulse Virtual 

Distortion Method is used to analyse the elastic wave propagation in the truss 

structures. IVDM allows modeling the modifications of the structure by the state 

of the time-dependent distortions imposed on the initial structure. Distortions, 

identified at the given time interval with the state of initial deformations, have a 

form of sequence of impulses. IVDM states that the dynamical response of the 

modified structure can be expressed as a superposition of the health structure 

response and the response generated by the distortions. In the process of 

identification the measured response in certain elements of the structure 

(subjected to some known excitation) is used to determine the distortion 

functions, which in turn define the influence of modification on the structure 

response. It is demonstrated that basing on the compatible system of analogies 

the same identification procedure can be also applied to the electrical circuits. 

 

 

INTRODUCTION 

 

The analogies between electrical and mechanical systems, primarily visible 

in the mathematical form of equations describing system state and behaviour, 

are well recognized and frequently mentioned in the literature, for example in 

works concerning vibrations [1]. One of the main practical use of this concept 

was searching for the response of the real mechanical systems subjected to 

specific, hard-to-realize excitations and how the response is influenced by the 

modifications of properties or re-configuration of the system. Using analogous 

electrical systems made this process possible and much simpler.  
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Along with the development of numerical methods of analysis (like FEM) this 

approach became unpractical and obsolete. However, there is still a need for the 

experimental verification of numerical models and analogous systems, although 

indirectly, may be the answer for that demand. Another field of application, 

which is the aim of our research, are electro-mechanical coupled systems. The 

idea is that electrical mesh, embedded into structural element and topologically 

compatible with its geometry, could have been used to identify and locate 

mechanical defects (like cracks, whose occurrence would have induced breaks 

in electrical connections). This identification system is considered not as a 

stand-alone, rather as working together with other SHM system, so having and 

applying the same numerical tools for dynamical analysis of both systems would 

have been a great facilitation. In the following study we concentrate on the 

numerical model of an electrical circuit, analogous to the FEM-based model of 

the plane truss structure. This analogy is simple and particularly apparent in the 

aspects of topology description (members connected in nodes), constitutive 

relations (forces/displacements vs. currents/potentials) and equilibrium 

equations (equilibrium of forces and continuity of deformations vs. Kirchhoff's 

laws). It allows to analyse the proposed model on the basis of the so-called 

Impulse Virtual Distortion Method, which in the case of truss structures has 

shown its efficiency [2,3]. Using of IVDM, as it strongly utilizes the 

superposition principle, is limited to the linear problems. The concept of using 

Virtual Distortion Method in static analysis and defect identification in the 

electrical circuits was presented in [4]. 

 

 

NUMERICAL MODEL OF ELECTRIC CIRCUIT 

 

In the proposed model every branch of the electrical circuit corresponds to 

the truss member and is represented by a two-node finite element. The general 

Electrical Finite Element (EFE) shown in fig.1 consists of capacitance C, 

conductance G and inductance L connected parallel. The constitutive relation for 

the element is: 
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Figure 1. Electrical Finite Element 

 

 



This parallel model is geometrically compatible with 1DOF mechanical system. 

Currents associated with G, L and C are equivalent to the forces while voltage 

corresponds to the velocity. In the FEM model of truss structure the unknown 

variables are displacements of the nodes, while all excitations are reduced to the 

nodal forces. The equivalent quantities in electrical model are nodal potentials v 

(unknown variables) and current sources j supplying the nodes of the circuit 

(excitations). The model of the circuit is a closed one (no current flow from and 

on outside), so current sources are associated with the elements. Comparing the 

EFE with its mechanical counterpart of plane truss element the following 

differences can be distinguished: 

− Every node has only one degree of freedom.  

− No geometrical transformation from local to global coordinate system is 

needed. The directions of current flows and polarization of voltages can be 

determined with reference to the pre-established oriented graph of the 

circuit. 

− EFE can consists of arbitrary combination of G, L and C (as exist real 

elements with only one of those features)  

− Boundary conditions correspond to the grounding of the nodes (potentials 

equal zero) and are applied in the same manner as in mechanical models 

with blocked degrees of freedom. At least one node of the circuit has to be 

grounded in order to obtain non-singularity of global matrices. 

The global equilibrium equation of the system can be obtained by aggregation of 

the elements (like in FEM), but we will approach to this problem basing on 

topological information about the structure of the circuit. Circuit structure can 

be represented in the form of the oriented graph, which in turn can be coded in 

the form of nodal matrix M. Rows of the matrix correspond to nodes while 

columns to the edges of the graph. Mij = 1 means that edge j is adjacent with 

node i and is oriented from that node, Mij = -1 means that edge is oriented 

toward the node, and zero means that there is no adjacency between edge and 

node. The starting point in determining the global equilibrium equation is 

Kirchhoff's current law (algebraic sum of currents entering and exiting node 

equals zero). In the matrix notation this can be written as: 

 

M i = - M j
e
     (2) 

 

On the left-hand side of equation (2) are currents associated with the elements, 

on the right-hand side – currents associated with the excitations. The system of 

constitutive relations (eq.1) for all elements looks as follows: 
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where C
e
, G

e
 and K

e
 ( K

e
(i,i) = 1 / L(i) ) are diagonal matrices of parameters. 

Voltages can be expressed in function of nodal potentials: 
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Substituting 4 into 3 and 2 we obtain: 

 

M C
e
 M

T
 v' + M G

e
 M

T
 v' + M K

e
 M

T ∫v = -M j
e
  (5) 

 



Introducing the following substitution: v = x' and marking: 

  

C = M Ce M
T
 ;   G = M Ge M

T
 ;   K = M Ke M

T
 ;   j = -M je  (6) 

 

we finally obtain the global equilibrium equation, equivalent to the equation of 

motion in mechanics: 

 

Cx'' + Gx' + Kx = j    (7) 

 

Because of the assumption that in some elements some features can be neglected 

matrices C, G, K may be singular. Although the direct indication that quantities 

i, j, u, v and x are functions of time was discarded, all above relation are 

fulfilled in every instant. The dynamic response of the system in discrete time 

domain can be obtained by direct integration of equation (7) according to the 

Newmark algorithm. Particularly important in the further analysis is finding the 

response of the system on impulse excitation. This is done by setting the 

excitation value to 1 in the chosen element in the first time step and to zero in all 

the following steps, with initial conditions equal zero (non-energized state). It 

will be shown later that knowing the impulse response it is possible to find the 

response on arbitrary time-variable excitation.  

 
 

IVDM FORMULATION 
 

The Impulse Virtual Distortion Method can be classified as a fast re-analysis 

technique, based on the FEM model of the system. Suppose that the system is 

subjected to some known excitation, which generates the dynamical response 

defined as “linear response” of the system. Introducing modifications of the 

system properties causes that the same excitation generates another, “modified” 

response. IVDM states that modifications of the system can be modelled by the 

states of distortions imposed on the initial system. Distortions, defined as the 

time-dependent states of non-static deformations, in FEM model are introduced 

as a pairs of self-equilibrated variable nodal forces. The “residual response” 

generated by the distortions superposed with the linear response equals to the 

modified response of the system. By analogy, distortions imposed on the model 

of electrical circuit can be interpreted as a virtual current sources associated with 

those elements, whose parameter modifications are modelled. The residual 

response can be found by solving equation (7) with the appropriate vector of 

distortions (time-dependent) on the right-hand side of the equation. However, in 

IVDM this is done in a simpler way by the superposition of linear combinations 

of distortions ε making use of the so-called impulse influence matrix D. The 

formula for the residual response of the system (voltages) is: 
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The impulse influence matrix is a three-dimensional matrix which stores the 

responses of the system on the impulse excitations. The member Dij(t0) gives the 

voltage response in the i
th

 edge of the circuit in the instant t = t0 on unit impulse 

distortion imposed on the j
th

 edge in the instant t = 0. Relation (8) is based on the 



principle that the time-variable function (and so are distortions grouped in the 

vector ε) can be considered as a sequence of impulses equal to the values of 

function at the given instants. Influence matrix is calculated using Newmark 

algorithm (given column is a vector of response for the impulse excitation in the 

appropriate edge), so the time dimension is also discrete. The relation for current 

residual response can also be derived (similarly to the equation (8) with the 

difference that influence matrix needs to store current responses). 

As it was mentioned, distortions model the modifications of the system. In the 

following analysis it is assumed that only the conductance of elements can 

change. The constitutive relations for the modified and modelled circuit are: 
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i(t) = C
e
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e
 ∫u(t) + ε(t)  (10) 

 
where i(t), u(t) are vectors of modified responses of the circuit, G

e
' is a matrix 

of modified values of conductance and ε(t) is a vector of distortion. The 

interpretation is that distortions compensate the change of currents in elements 

caused by the change of conductance. Comparing (10) and (9), according to the 

claim that responses of modified and modelled circuits are the same, the 

following relation is obtained: 
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where µi = G
e
'i / G

e
i is modification parameter. On the right-hand side of the 

relation (11) we have the vector of modified response u(t), which is the sum of 

linear and residual response, so it also depends on distortions: 

 

u(ε,t) = u
L
(t) + u

R
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The conclusions coming from the analysis of relations (11) and (12) are that 

distortions occur only in those elements of modelled system, where 

modifications occur in modified system, but their form also depends on other 

distortions imposed on the system. Inserting (12) into (11) the following system 

of equation can be obtained: 
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It can be solved sequentially for every instant starting from t = 0, but it is 

numerically inefficient because of the fact that in every instant on the left-hand 

side there is another matrix which needs to be decomposed and inverted. 

Relation (13) can be transformed into another system of linear equations: 

 

A
0 ε(t) = b(t)     (14) 
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System of equation (14) also has to be solved sequentially, but the matrix A
0
 is 

now constant for every instant t, only vector b(t) has to be updated. System of 

equations (14) allows calculating distortions that model the modification of the 

system, knowing beforehand the influence matrix and the linear response of the 

system on the determined excitation. Distortions imposed on the initial system 

will generate the same response as in the modified system. 

 

 

THE IDENTIFICATION PROCEDURE (CONCEPT) 
 

The purpose of the proposed procedure is identification of defects, 

interpreted as modifications of conductance in certain elements of the system. 

The procedure relies on the examination of changes in the response of the 

system subjected to the determined excitation. The choice of excitation function 

is a problem by itself and will not be discussed here, but generally the function 

should be chosen in such a way to obtain the response of the modified system 

significantly different from the linear response. The proposed procedure of 

defect identification is gradient based and reduces to the problem of 

optimisation the objective function g which base on the summation of 

differences between the measured response u
M

(t)
 
of the modified system and the 

response u(t,µ) of the modelled system, with the modification parameter µ as the 

steering variable: 
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Gradient of the objective function with respect to the steering variable: 
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The main part of calculations is finding the gradient of the response function. 

We will make use of the chain rule: 
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The gradient of system response with respect to the selected distortion is easy to 

calculate making use of the equations (12) and (8): 
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The formula for the gradient of distortion with respect to the modification 

parameter is derived as a result of differentiation of equation (14) with respect to 

the selected modification parameter.  
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Matrix A
0
 remains unchanged (relation 15) and vectors on the right-hand side 

are expressed as follows: 
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System of equation (24) needs to be solved sequentially for every time step and 

for every chosen parameter µs. 

 

The algorithm of optimisation base on the steepest descent method. In every 

iteration the vector of steering variable is updated according to the following 

(general) formula:  
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where N is a certain norm dependent on gradient and ∆ is a step length (which 

also can be optimised in order to speed up the convergence). The general 

concept of algorithm is presented in fig. 2. 

 

 

CONCLUSION 
 

It has been demonstrated that basing on the system of analogy certain class of 

electrical circuits can be analysed utilizing the method from structural 

mechanics. The presented derivations give a theoretical basis for the future 

development and practical application. The presented identification procedure is 

up-to-now only a concept as work on programming it is still in progress. 
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Figure 2. General algorithm of defect identification 
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Initial data: 

• FEM-based model of the circuit 

• Reference excitation function 

• Measured response of modified circuit 

 

Initial computations: 

• Linear response 

• Impulse influence matrix 

 

Iterative procedure: 

• finding the gradient (relations 20-22) and the value of the 

response function for  the given vector of steering variables 

• finding the gradient of the objective function (relation 19) 

• finding the successive vector of steering variables (relation 25) 

• checking the constraints imposed on steering variables 

• checking the stop criterion 


